Detecting plant pathogens and diagnosing diseases are critical components of successful pest management. These key areas have undergone significant advancements driven by breakthroughs in molecular biology and remote sensing technologies within the realm of precision agriculture. Notably, nucleic acid amplification techniques, with recent emphasis on sequencing procedures, particularly next-generation sequencing, have enabled improved DNA or RNA amplification detection protocols that now enable previously unthinkable strategies aimed at dissecting plant microbiota, including the disease-causing components. Simultaneously, the domain of remote sensing has seen the emergence of cutting-edge imaging sensor technologies and the integration of powerful computational tools, such as machine learning. These innovations enable spectral analysis of foliar symptoms and specific pathogen-induced alterations, making imaging spectroscopy and thermal imaging fundamental tools for large-scale disease surveillance and monitoring. These technologies contribute significantly to understanding the temporal and spatial dynamics of plant diseases.
Modeling the accuracy of Xylella fastidiosa molecular diagnostic tests in naturally-infected almond tree samples
Xylella fastidiosa (Xf) is a quarantine plant pathogen in the European Union, recognized as a high-priority pest due to its devastating cultural and economic impact on crops, ornamental plants, and landscape vegetation. The development and implementation of reliable,...