Home 9 Outcomes 9 Publications 9 Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce’s disease

Linking intercontinental biogeographic events to decipher how European vineyards escaped Pierce’s disease

Authors: Eduardo Moralejo, Àlex Giménez-Romero and Manuel A. Matías
Date Published: 02/10/2024
Keywords: Epidemiology | Genomic
DOI: https://doi.org/10.1098/rspb.2024.1130
Repository link: http://hdl.handle.net/10261/376226

Abstract

Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce’s disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872–1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.

Modeling the accuracy of Xylella fastidiosa molecular diagnostic tests in naturally-infected almond tree samples

Authors: María Del Pilar Velasco Amo, Concepción Olivares-García, Miguel Román-Écija, Ester Marco-Noales, Juan A. Navas-Cortés, and Blanca Beatriz Landa del Castillo

Date: 19/02/25

Xylella fastidiosa (Xf) is a quarantine plant pathogen in the European Union, recognized as a high-priority pest due to its devastating cultural and economic impact on crops, ornamental plants, and landscape vegetation. The development and implementation of reliable,...

Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa

Authors: Luis Moll, Esther Badosa, Leonardo De La Fuente, Emilio Montesinos, Marta Planas, Anna Bonaterra, and Lidia Feliu

Date: 27/01/25

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates...

Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP

Authors: Serena, Amoia Serafina; Falcón-Piñeiro, Ana; Pastar, Milica; Garcìa-Madero, José Manuel; Contaldo, Nicoletta; Muegge, Mikael; Compant, Stéphane; Saldarelli, Pasquale; Minafra, Angelantonio

Date: 13/01/25

Xylella fastidiosa (Xf) is a quarantine pathogen heavily affecting economically important crops worldwide. Different sequence types (STs) belonging to Xf subspecies are present in various areas of Spain, including the Balearic Islands, and cause the...