Home 9 Outcomes 9 Publications 9 Bioecological traits of spittlebugs and their implications on the epidemiology and control of Xylella fastidiosa epidemic in Apulia

Bioecological traits of spittlebugs and their implications on the epidemiology and control of Xylella fastidiosa epidemic in Apulia

Authors: Nicola Bodino, Vincenzo Cavalieri, Crescenza Dongiovanni, Maria Saponari, Domenico Bosco
Date Published: 03/11/2023
Keywords: Epidemiology | Vectors
DOI: https://doi.org/10.1094/PHYTO-12-22-0460-IA
Repository link: http://hdl.handle.net/10261/343324

Abstract


Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors’ traits—points ii, iii, and iv—focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors’ bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors’ key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe.

Modeling the accuracy of Xylella fastidiosa molecular diagnostic tests in naturally-infected almond tree samples

Authors: María Del Pilar Velasco Amo, Concepción Olivares-García, Miguel Román-Écija, Ester Marco-Noales, Juan A. Navas-Cortés, and Blanca Beatriz Landa del Castillo

Date: 19/02/25

Xylella fastidiosa (Xf) is a quarantine plant pathogen in the European Union, recognized as a high-priority pest due to its devastating cultural and economic impact on crops, ornamental plants, and landscape vegetation. The development and implementation of reliable,...

Mitigation of Almond Leaf Scorch by a Peptide that Inhibits the Motility of Xylella fastidiosa

Authors: Luis Moll, Esther Badosa, Leonardo De La Fuente, Emilio Montesinos, Marta Planas, Anna Bonaterra, and Lidia Feliu

Date: 27/01/25

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that is a menace to the agriculture worldwide, threating economically relevant crops such as almond. The pathogen presents a dual lifestyle in the plant xylem, consisting of sessile microbial aggregates...

Naked-Eye Molecular Testing for the Detection of Xylella fastidiosa in Mallorca (Balearic Island) Almond Orchards by Colorimetric LAMP

Authors: Serena, Amoia Serafina; Falcón-Piñeiro, Ana; Pastar, Milica; Garcìa-Madero, José Manuel; Contaldo, Nicoletta; Muegge, Mikael; Compant, Stéphane; Saldarelli, Pasquale; Minafra, Angelantonio

Date: 13/01/25

Xylella fastidiosa (Xf) is a quarantine pathogen heavily affecting economically important crops worldwide. Different sequence types (STs) belonging to Xf subspecies are present in various areas of Spain, including the Balearic Islands, and cause the...