from emergency to management

Integrated Management Strategies for mitigating Xylella fastidiosa impact in Europe

List of the most active EF against spittlebug vectors and of the viruses associated with Philaenus spumarius Deliverable 5.1

13 August 2024

Author(s): Domenico Bosco (P6-UNITO) – Enrique Quesada-Moraga (P3-UCO)

DELIVERABLE INFORMATION

Start of the project:	01 Sep 2022
Duration:	48 months
Coordinator:	Blanca B. Landa
Deliverable title:	List of the most active EF against spittlebug vectors and of the
	viruses associated with P. spumarius
Deliverable n°:	5.1
Nature of the deliverable:	Data
Dissemination level:	Public
WP contributing:	WP5
Lead beneficiary:	UNIVERSITA DEGLI STUDI DI TORINO
Due date of deliverable:	31 Aug 2024
Actual submission date:	13 Aug 2024

Deliverable status

Ver.	Status	Date	Author(s)
1.0	Final	13 August 2024	Domenico Bosco (P6-UNITO) and Enrique Quesada-Moraga (P3-UCO)

Disclaimer

The content of this deliverable does not necessarily reflect the official opinions of the European Commission or other institutions of the European Union.

BeXyl Grant Agreement 101060593 D5.1. List of the most active EF against spittlebug vectors and of the viruses associated with Philaenus spumarius

Table of contents

1.	Background	.4
2.	Data List	.5

1. BACKGROUND

To fill existing gaps in the knowledge of biological control agents, fungi (EF) and viruses, research activities have been carried out in the laboratories of the University of Cordoba, Spain (P3-UCO) and University of Torino, Italy (P6-UNITO).

The list of the most effective EF against the spittlebug is provided in Table 1. The activity (mortality) recorded in experimental trials is also reported.

Viruses were identified by RNAseq in insect pools; only viruses whose RdRp sequences were identified were selected for further confirmation of their prevalence in the individuals that made up the RNAseq pools and are listed in Table 2.

2. DATA LIST

Table 1. List of entomopathogenic fungal strains showing potential for *Philaenus spumarius* control

Strain	Species	Origin	Agroecosystem	Target	Mortality (%)
EAMa 10/01-Fil	Metarhizium guizhouense	Adamuz (Córdoba, Spain)	Olive weed phylloplane	adults	100% (conidia)
EAMa 00/19–Su	<i>Metarhizium</i> sp.	Abla (Almería, Spain)	ola (Almería, Spain) Olive crop soil adults		100% (conidia)
EAMa 01/58-Su*	Metarhizium brunneum	Hinojosa del Duque (Córdoba, Spain)	Wheat crop soil	adults	95% (conidia)
EAMb 09/01-Su	Metarhizium brunneum	Castilblanco de los Arroyos (Sevilla, Spain)	Oak ecosystem	adults	71% (conidia)
EABb 01/126–Su	Beauveria bassiana	Bornos (Cádiz, Spain)	Olive crop soil	adults	68% (conidia)
EAMa 09/01-Su	Metarhizium sp.	Valbom de Baixo (Portugal)	Olive crop soil	adults	67% (conidia)
EAMa 01/158-Su	Metarhizium robertsii	Utrera (Sevilla, Spain)	Olive crop soil	adults	67% (conidia)
EABb 04/01-Tip§	Beauveria bassiana	Écija (Sevilla, España)	Iraella luteipes larvae	2nd-3rd stage nymphs	54% (conidia)
EAMa 01/58-Su*§	Metarhizium brunneum	Hinojosa del Duque (Córdoba, Spain)	Wheat crop soil	2nd-3rd stage nymphs	52% (conidia)
CnV2i	Metarhizium anisopliae	Canale (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	98% (conidia)
BP1q	Metarhizium anisopliae Barolo (Cuneo, Italy)		Organic vineyard soil	2nd-3rd stage nymphs	98% (conidia)
BP1k	Metarhizium robertsii	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	96% (conidia)
BP1o	Metarhizium anisopliae	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	94% (conidia)
BP1r	Metarhizium sp.	zium sp. Barolo (Cuneo, Italy) Organic vineyard soil		2nd-3rd stage nymphs	94% (conidia)
BP1f	Metarhizium robertsii	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	92% (conidia)
ATCC 74040	Beauveria bassiana	from commercial product - Naturalis®		2nd-3rd stage nymphs	92% (conidia)
BP1I	Metarhizium anisopliae	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	90% (conidia)
BP1e	Metarhizium anisopliae	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	84% (conidia)
BV1a	Ophiocordyceps heteropoda	Barolo (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	82% (conidia)
Cas1h	Clonostachys rosea	Castiglione (Torino, Italy)	Conventional vineyard soil	2nd-3rd stage nymphs	82% (conidia)
Cg2b	Beauveria pseudobassiana	Costagrande (Torino, Italy)	Woodland soil	2nd-3rd stage nymphs	74% (conidia)
FV1c	Metarhizium anisopliae	La Morra (Cuneo, Italy)	Organic vineyard soil	2nd-3rd stage nymphs	74% (conidia)
DSF **	Lecanicilllium aphanocladii			2nd-3rd stage nymphs	78% (conidia)
DSF	Lecanicilllium aphanocladii	Torino (Italy)	Semi-field maintenance	3rd-4th stage nymphs	50% (conidia)
DSF **	Lecanicilllium aphanocladii		rearing 2nd-3rd stage nymp		90% (blastospores)

* Yousef-Yousef M., Morente M., González-Mas N., Fereres A., Quesada-Moraga E., Moreno A., 2023. Direct and indirect effects of two endophytic entomopathogenic fungi on survival and feeding behaviour of meadow spittlebug *Philaenus spumarius*. Biological Control 186, 105348.

** Bodino N., Barbera R., González-Mas N., Demichelis S., Bosco D., Dolci P., 2024. Activity of natural occurring entomopathogenic fungi on nymphal and adult stages of *Philaenus spumarius*. Journal of Invertebrate Pathology 204, 108078. ⁵ capable of endophytic colonization in olive covers

BeXyl Grant Agreement 101060593 D5.1. List of the most active EF against spittlebug vectors and of the viruses associated with Philaenus spumarius

Table 2. List of insect viruses associated with Philaenus spumarius, as identified by RNAseq a	ind
confirmed by specific PCR assays. All viruses have been identified in adult spittlebugs.	

Temporary	Viral genome			
Virus name	structure	Putative viral order	Origin	Agroecosystem
Ps_Nido	ss+RNA Monopartite	Pisoniviricetes	Valenzano (Bari, Italy)	Olive grove
Ps_Ifla1	ss+RNA Monopartite	Picornavirales	Sault (Provence, France)	Woodland/meadow
Ps_Ifla1	ss+RNA Monopartite	Picornavirales	Chieri (Torino, Italy)	Meadow
Ps_Ifla1	ss+RNA Monopartite	Picornavirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Ifla2	ss+RNA Monopartite	Picornavirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Ifla3	ss+RNA Monopartite	Picornavirales	Sault (Provence, France)	Woodland/meadow
PS_Ifla3	ss+RNA Monopartite	Picornavirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Ifla4	ss+RNA Monopartite	Picornavirales	Chieri (Torino, Italy)	Meadow
PS_Ifla4	ss+RNA Monopartite	Picornavirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Bunya1	ss-RNA Segmented	Elliovirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Bunya2	ss-RNA Segmented	Elliovirales	Sault (Provence, France)	Woodland/meadow
PS_Bunya3	ss-RNA Segmented	Elliovirales	Sault (Provence, France)	Woodland/meadow
PS_Bunya3	ss-RNA Segmented	Elliovirales	Canale di Verde (Corse, France)	Woodland/meadow
PS_Bunya3	ss-RNA Segmented	Elliovirales	Arnasco (Savona, Italy)	Olive grove
Ps BUNYA 4	ss-RNA Segmented	Elliovirales	Sault (Provence, France)	Woodland/meadow
 Ps_BUNYA 4	ss-RNA Segmented	Elliovirales	Chieri (Torino, Italy)	Meadow
Ps_BUNYA 5	ss-RNA Segmented	Elliovirales	Sault (Provence, France)	Woodland/meadow
PS_Rhabdo1	ss-RNA Segmented	Mononegavirales	Sault (Provence, France)	Woodland/meadow
PS_Rhabdo1	ss-RNA Segmented	Mononegavirales	Canale di Verde (Corse, France)	Woodland/meadow
PS_Rhabdo1	ss-RNA Segmented	Mononegavirales	Arnasco (Savona, Italy)	Olive grove
PS_Rhabdo1	ss-RNA Segmented	Mononegavirales	Cisano (Savona, Italy)	Olive grove
PS_Rhabdo 2	ss-RNA Segmented	Mononegavirales	Sault (Provence, France)	Woodland/meadow
PS_Reo	dsRNA Segmented	Reovirales	Sault (Provence, France)	Woodland/meadow
Ps_REO2	dsRNA Segmented	Reovirales	Chieri (Torino, Italy)	Meadow
PS_Narna1	ss+RNA Monopartite	Wolframvirales	Bellino (Cuneo, Italy)	Alpine meadow
Ps_Narna2	ss+RNA Monopartite	Wolframvirales	Bellino (Cuneo, Italy)	Alpine meadow
Ps_Narna3	ss+RNA Monopartite	Wolframvirales	Bellino (Cuneo, Italy)	Alpine meadow
PS_Tomb	ss+RNA Monopartite	Tolivirales	Sault (Provence, France)	Woodland/meadow
PS_Tomb	ss+RNA Monopartite	Tolivirales	Chieri (Torino, Italy)	Meadow
PS_Ortho	ss-RNA Segmented	Articulavirales	Bellino (Cuneo, Italy)	Alpine meadow
Ps_Queny	ss+RNA Segmented	Unknown	Sault (Provence, France)	Woodland/meadow
Ps_Partiti	dsRNA Segmented	Durnavirales	Canale di Verde (Corse, France)	Woodland/meadow
Ps_Partiti	dsRNA Segmented	Durnavirales	Chieri (Torino, Italy)	Meadow
Ps_Flavi	ss+RNA Monopartite	Amarillovirales	Sault (Provence, France)	Woodland/meadow
Ps MITO 1	ss+RNA Monopartite	Cryppavirales	Chieri (Torino, Italy)	Meadow
Ps_MITO 2	ss+RNA Monopartite	Cryppavirales	Chieri (Torino, Italy)	Meadow
Ps_Quaranja	ss-RNA Segmented	Articulavirales	Bellino (Cuneo, Italy)	Alpine meadow
Ps Ourmia 1	ss+RNA Segmented	Ourlivirales	Bellino (Cuneo, Italy)	Alpine meadow
Ps_Ourmia 2	ss+RNA Segmented	Ourlivirales	Bellino (Cuneo, Italy)	Alpine meadow

